2014-03-10

1

ELEMENTS OF

BUILDING MATERIALS ENGINEERING

Branches of civil engineering

CE area	Scope		
	Overground structure		
Building	Houses		
engineering	Public buildings: schools, hospitals, theaters, railway stations		
	Engineer structures: bridges, viaducts, dams		
Sanitary systems	Sanitary fittings, sewage treatment plants		
Industrial	Factories, stores		
Agricultural	Outbuildings and buildings for livestock		
Sacred	Churches, cloisters		
Defensive	Military installations		
Ground structure			
Communication	Roads, highways, railroads		
Underground structure			
Communication	Tunnels, subway, underground passes		
Defensive	Shelters		

Relative share of building materials in EU-construction industry (2000)

Construction material	Consumption (tons)	Ratio (%)
Concrete and cement based	503 000 000	71
Tiles and bricks	73 000 000	10
Timber	54 000 000	7
Iron and steel	24 000 000	3
Stone, quarry	16 000 000	2
Asphalt and bitumen	16 000 000	2
Polymers	6 850 000	0,97
Flat glass	5 200 000	0,73
Mineral wool	2 000 000	0,3
Copper	1 300 000	0,2
Aluminium	900 000	0,1

Building materials or their compounds

Homogeneous systems

18

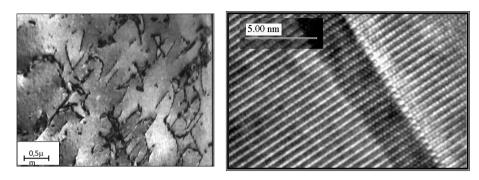
(one phase)

Eg. glasses, crystals

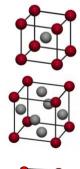
18

Non-homogeneous systems

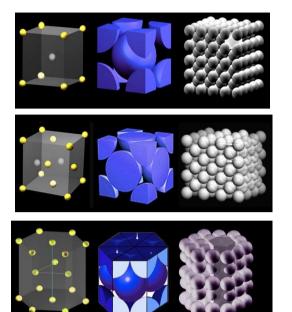
(multi-phase)


eg. colloids, composites

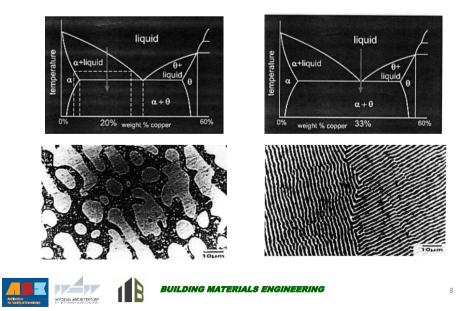
4


Atomic structure of metals

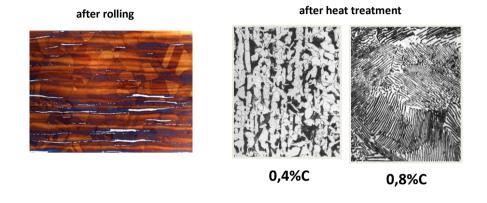
Transmission Electron Microscope


- there are 14 different types of crystal unit cell structures or lattices are found in nature.
- most metals and many other solids have unit cell structures described as:
 - body center cubic (bcc),
 - face centered cubic (fcc)
 - Hexagonal Close Packed (hcp).

5

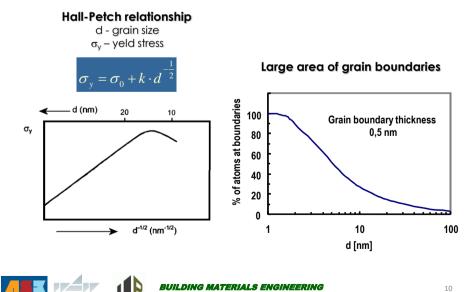


sodium, potassium, chromium, barium, vanadium, alpha-iron and tungsten


aluminum, copper, lead, nickel, silver

beryllium, cadmium, magnesium, titanium, zinc and zirconium

Alloys microstructure vs. composition



Steel: alloy Fe – Fe₃C

Basic relation: properties - microstructure

R

WYDZIAŁ ARCHITEKTURY

10

9

What is a composite?

A composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other.

Mechanics of Composite Materials, Second Edition, 2006 by Taylor & Francis Group, LLC

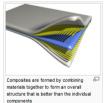
What is a composite?

11

Composite material

From Wikipedia, the free encyclopedia

For the specific carbon and glass fiber based composite materials often referred to loosely as 'composites', see Fiber-reinforced polymer.


Composite materials (also called composition materials or shortened to composites) are materials made from two or more constituent materials with significantly different physical or chemical properties, that when combined, produce a material with characteristics different from the individual components. The individual components remain separate and distinct within the finished structure. The new material may be preferred for many reasons: common examples include materials which are stronger, lighter or less expensive when compared to traditional materials.

Typical engineered composite materials include:

- Composite building materials such as cements, concrete
 Reinforced plastics such as fiber-reinforced polymer
- Reinforced plastics
 Metal Composites

Ceramic Composites (composite ceramic and metal matrices)

Composite materials are generally used for buildings, bridges and structures such as boat hulls, swimming pool panels, race car bodies, shower stalls, bathtubs, storage tanks, imitation granite and cultured marble sinks and counter tops. The most advanced examples perform routinely on spacecraft in demanding environments.

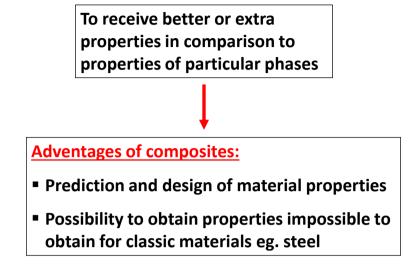
13

14

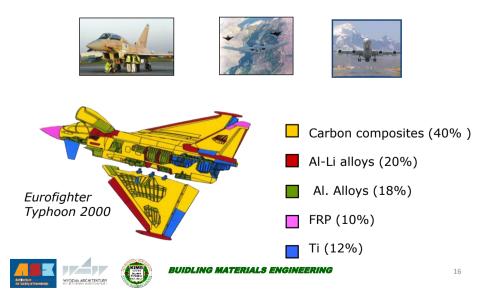
Two main constituent (phase):

> REINFORCING PHASE

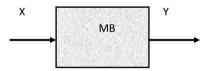
and the one in which it is embedded is called the


> MATRIX

The reinforcing phase material may be in the form of fibers, particles, or flakes.

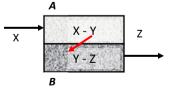

The matrix phase materials are generally continuous. Examples of composite systems include concrete reinforced with steel and epoxy reinforced with graphite fibers, etc.

Composites offer several advantages over conventional materials: improved strength, stiffness, fatique and impact resistance, thermal conductivity, corrosion resistance, etc


Specific modulus: E / p

Specific strength: R / p

modulus/strength to weight ratio


BCT 2010/2011 - Andrzei Garbacz

Composites properties:

Synergic properties Additive properties Δ Α X - Y_A X - Y Ζ х х X - Y_B Y - Z В

eg. Young modulus

Material Units	Specific gravity	Young's modulus (GPa)	Ultimate strength (MPa)	Specific modulus (GPa-m3 /kg)	Specific strength (MPa-m3 /kg)
Graphite fiber	1.8	230	2067	0.1278	1.148
Aramid fiber	1.4	124	1379	0.0885	0.985
Glass fiber	2.5	85	1550	0.0340	0.620
Unidirectional graphite/epoxy	1.6	181	1500	0.1131	0.938
Unidirectional glass/epoxy	1.8	38	1062	0.0214	0.590
Cross-ply graphite/epoxy	1.6	95	373	0.0600	0.233
Cross-ply glass/epoxy	1.8	23	88	0.0131	0.049
Quasi-isotropic graphite/epoxy	1.6	69	276	0.0435	0.173
Quasi-isotropic glass/epoxy	1.8	19	73	0.0105	0.041
Steel	7.8	207	648	0.0265	0.083
Aluminum	2.6	69	276	0.0265	0.106

Specific mechanical properties vs. material types

BUILDING MATERIALS ENGINEERING

19

Application of FRP in building industry

CFRP sheets combined with bonded steel plates

Application of FRP in building industry

BUIDLING MATERIALS ENGINEERING

Application of FRP in building industry

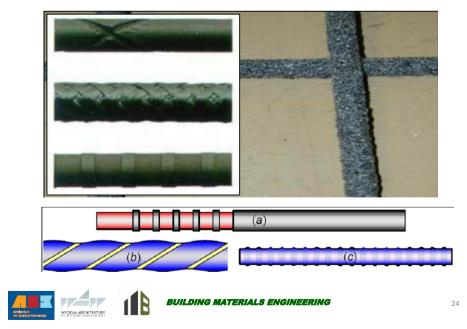
St. Waudru, Frameries, Masonry vault, strengthened with aramid fibres

Photo. D. Van Gemert

21

Non-ferrous reinfrocement systems for concrete

118



BUILDING MATERIALS ENGINEERING

23

Adhesion do concrete!

Light-transmitting concrete

concrete

Fiber optics

Light-transmitting concrete

25

Light-transmitting concrete - examples

Europe Gate Komarom, Węgry, 2004

B

Museum Cella Septichora Pecs, Węgry, 2006

Light-transmitting concrete - examples

	Tracon			
	LiTraCon	Ordinary concrete		
density(kg/m ³)	2100 - 2400	2000-2600		
Compr. Strength (MPa)	32-49	30-50 [*]		
BUILDING MATERIALS ENGINEERING 27				

n (MeO +
$$MeCl_2 + H_2O$$
) =
(-Me-O-Me-O-)_n + n HCl

$$2HCI + CaCO_3 = CaCI_2 + H_2CO_3$$
$$= CaCI_2 + H_2O + CO_2 \uparrow$$

Mineral polymer mortar

Facade repair by stone replacement

Re-shaping with usual stonecutter's tools

BUILDING MATERIALS ENGINEERING

Formal Aspects of Building Materials Application

BUIDLING MATERIALS ENGINEERING

30

29

31

Essential requirements for construction products Construction Products Directive CPD 89/106/EEC

- 1. Mechanical resistance and stability
- 2. Safety in case of fire
- 3. Hygiene, health and the environment
 - dangerous substances
 - global environment impact
- 4. Safety in use
- 5. Protection against noise
- 6. Energy economy and heat retention

par. 5 clause 1 pt. 1 of Building Law

Building [...] have to be designed and built [...] ensuring:

- 1) compliance with fundamental requirements relevant to:
 - a) security of construction,
 - b) fire security,
 - c) use security,
 - d) right Health and Safety conditions and environmental protection,
 - e) protection against noise and vibration,
 - f) economic use of energy and right heat insulation of building partitions.

"Law of building products"

Definitions

<u>**Conformity declaration:**</u> declaration, at producer's exclusive responsibility, on building product to be according to the polish standard or technical approbation.

Building mark: reserved mark providing guarantee of appropriate level of reliance, what means, that building product is accordant with polish standard or technical approbation.

"Law of building products", cont.

Definitions

Introduction of building product: first product delivery to user, consumer or supplier by producer or importer.

European technical approbation: positive technical opinion on building product fitness for intended purpose, dependent on compliance with basic requirements in building, issued in accordance with EU requirements

"Law of building products", cont.

Definitions

Supplier: transactor delivering introduced building product to the other transactor, in the purpose of use in building or subsequent deliver.

Certification of building product

• confirmation of building product properties accordance with polish standard (PN-EN), European standard (EN) or technical approbation (AT), for product made-up by one producer

• if certification is not obligatory for a product, the conformity declaration is required.

Producer issues such a declaration on conformity with document of reference.

Marking of building product

• Common mark

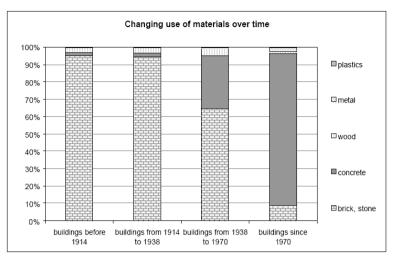
"Law of building products"

Regional building product

Traditionally produced on the restricted area building product, verified by well known practice, for local introduction; it could be marked by building mark on producers responsibility.

Regional building product can be established by local building inspection, on application of producer.

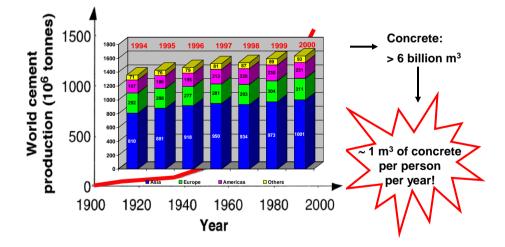
Sustainable development



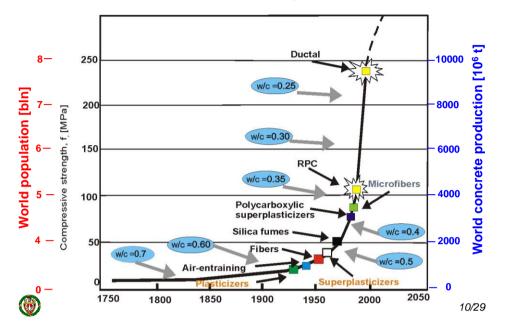
SUSTAINABLE DEVELOPMENT

implies meeting the needs of the present without compromising the ability of future generations to meet their own needs.

G.H. Bruntland, UN, 1987

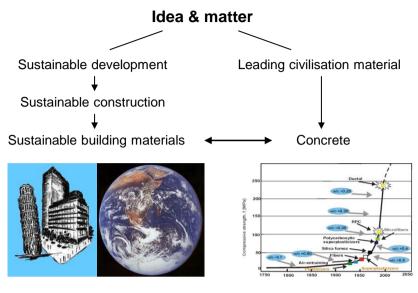


Changing use of materials over time


۲

8/29

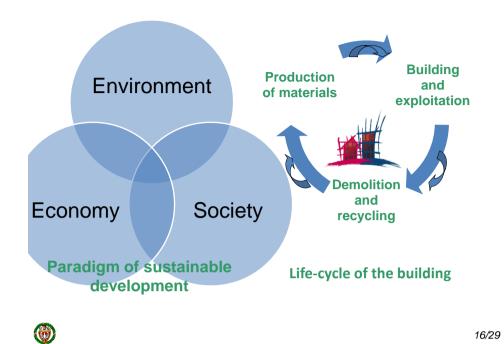
In less than one century, concrete has become the most widely used construction material over the world

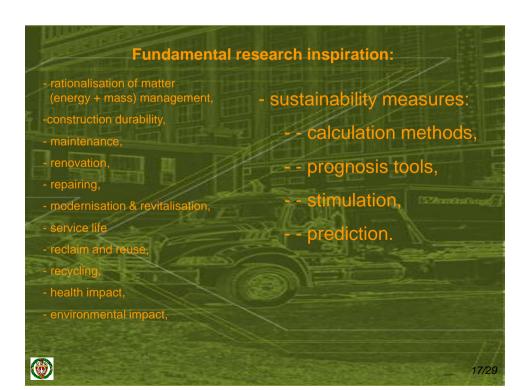


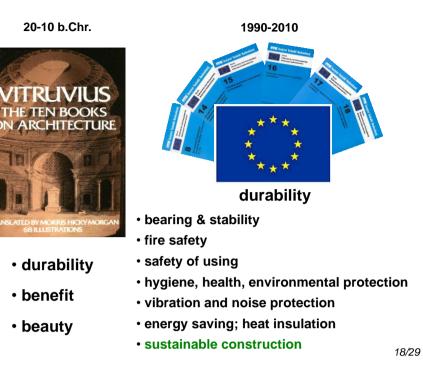
The concrete development curve

Concrete industry is consuming annually:

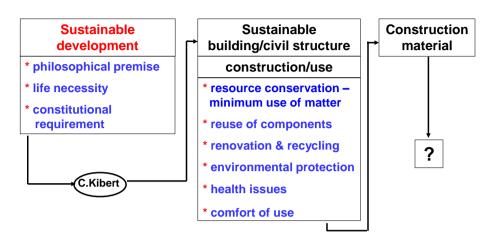
- cement 1.6 bln tonnes
- aggregates 20 bln tonnes
- water 800 mln m³ (0.5 % of total water consumption irretrievable
- CO₂ 7 % of total emitted greenhouse gases (but construction industry 35 %)
- Energy 40 %


Lead Market Initiative for sustainable construction




14/29

Use of resources/Production of pollution and waste	Environmental impact	Sustainability
Faster than natural regeneration	Degradation	None
Equal to regenerative potential	Balance	Steady state
Slower than regenerative potential	Regeneration	Development

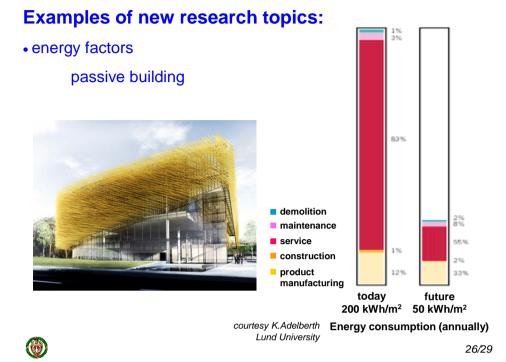


SustainableSustainableSustainablesustainable developmentstructural safety: load-bearing capacity and stabilityminimum quantity of materials used (resource conservation)demand for energy and emission of CO2performance criteria construction material assessmentenvironmental impactcapacity and stabilityminimum quantity of materials used (resource conservation)demand for energy and emission of CO2performance criteria construction material assessmentreduced costs of erection, maintenance, dismantling and recyclingfire safety hygiene, health and environmentmaximum re- use of possibility to renovateeffect of used materials and products on the environmentmodification of materials and new materials and new materials solutionsuse of highly-suitable materials solutionssafety of use protection against noise and vibrationpossibility to renovateevacuation of surface runoff materialsmaterial performance surface runoff waste managementmaterial performance surface runoff waste managementbig and growing share of repairs and modernisation in construction worksenergy-saving properties and thermal insulationenvironmental protectionminimised pollution health and comfort health and comfort health and comfort and building management	Development factors (International Concrete,	Principal requirements (ER	Sustainable acco	Research areas	
Initial load-bearing environmental impactload-bearing capacity and stabilityquantity of materials used (resource conservation)and emission of \mathbb{CO}_2 (materials used (dm ³ /person/day)construction material methods of suitabilit 	1998	89/106/EEC)		Building Code,	
energy savingconservationconservationassessmentreduced costs of erection, maintenance, dismantling and recyclingfire safetymaximum re- use of environmenteffect of used materials and products on the environmentmodification of materials and new materials and new materials olutionsuse of highly-suitable materials; optimisation of structural solutionssafety of use protection against noise and vibrationpossibility to renovate componentsevacuation of surface runoffmaterial performanc service conditions - materialsbig and growing share of repairs and modernisation in construction worksenergy-saving properties and thermal insulationenvironmental protection healthminimised pollution health and comfort and buildingrecycling of use of construction process and building	1	load-bearing capacity and	quantity of materials used (resource	and emission of CO ₂ water use	performance criteria of construction materials methods of suitability
use of ngniy-suitable safety of use possibility to renovate surface runoff material performance structural solutions protection against noise and vibration renovate components or materials waste management matching materials big and growing share of repairs and modernisation in construction works energy-saving properties and thermal insulation environmental protection environmental protection minimised pollution recycling of construction process and building design focused on the utility of the building/civil the material performance construction process management waste management material performance	reduced costs of erection, maintenance, dismantling	hygiene, health and	maximum re- use of	effect of used materials and products on the	modification of materials and new
repairs and modernisation in construction works energy-saving design focused on the utility of the building/civil energy-saving properties and thermal insulation energy-saving properties and thermal insulation energy-saving properties and thermal insulation energy-saving protection health energy-saving protection health energy-saving thermal insulation health energy-saving thermal insulation health energy-saving health energy-saving thermal insulation thermal insulation thermal insulation thermal insulation thermal insulation thermal insulation thermal insulation thermal insulation the saving thermal insulation the saving thermal insulation the saving the saving thermal insulation the saving the saving thermal insulation the saving the sa	materials; optimisation of	protection against	renovate components or	surface runoff	
utility of the building/civil and building	repairs and modernisation in construction works	properties and	protection	health and comfort	recycling of construction materials; use of waste material
ecology			health comfort of use	and building management	

Developments in the research areas concerning construction materials

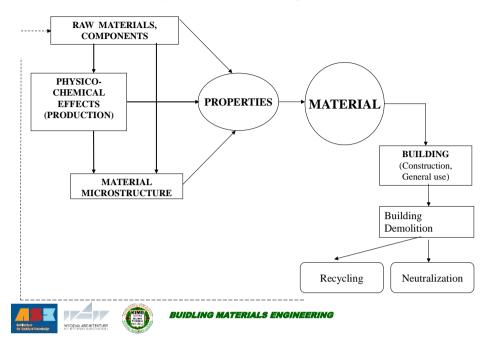
W

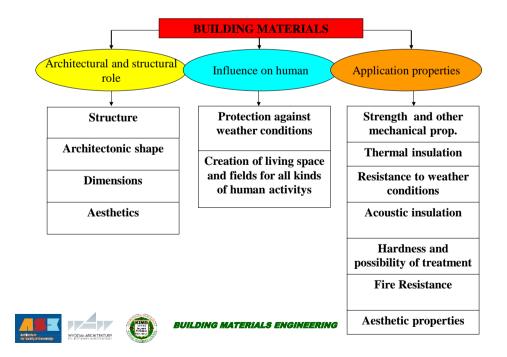
Performance concept – Well Defined Properties Product


۲

21/29

US Code, 1925:


Whenever possible, requirements should be stated in terms of performance, based upon test results for service conditions, rather than in dimensions, detailed methods or specific materials. Otherwise new materials, or new assemblies of common materials, which would meet construction demands satisfactorily and economically, might be restricted from use, thus obstructing progress in the industry.



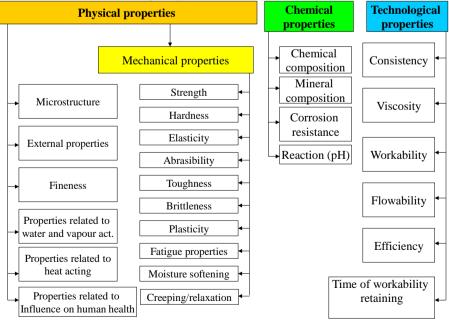
Lifecycle of building material

Technical properties of building materials

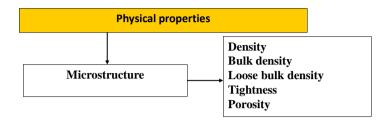
Material's reaction on different kinds of loads (*or influences*):

physical,

•mechanical,


•chemical,

·biological.


Material's behavior under different conditions and actions – e.g. mechanical loads, changes and gradients of temperature, freezing water, precipitations, aggressive fluids and vapours.

Technical properties of building materials

Density

Definition:

Weight of volume unit of material without pores in material

Unit:

[g/cm³, kg/m³]

Bulk density (apparent density)

Definition:

Weight of volume unit of material (including pores). Mass and volume ratio.

Unit: [g/cm³]

Loose bulk density

Definition:

Weight of volume unit of loose poured powder material.

unit:

[g/cm³]

Building Materials, Spring Semester, 2010

Karol J. Kowalski, Ph.D.

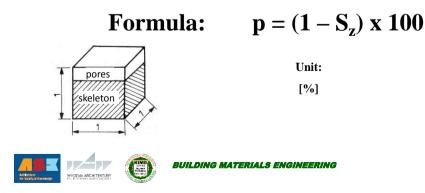
Slide 62 of 80

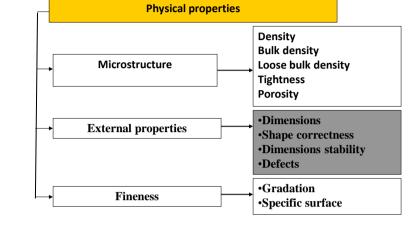
Tightness

Definition:

Ration of bulk density (ρ_p) and density (ρ)

formula: $S_z = \rho_p / \rho \le 1$




Unitless: [1]

Porosity (air content)

Definition:

Percent of free space in material (by volume).

Technical properties of building materials

GRADATION

Definition:

Percentage content of grains of each particular fraction in granular material

Grain, oversize grain, undersize grain

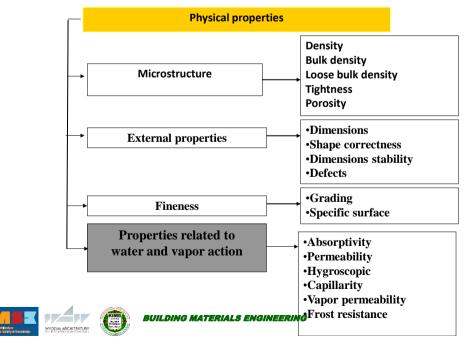
Unit:[%]

Specific Surface

definition:

Ratio of surface (sum of particles surfaces) and mass.

Measured for granular materials



Unit:[cm²/g, m²/kg,]

BUILDING MATERIALS ENGINEERING

Technical Properties of Building Materials

Absorptivity

Definition:

Capability of material to absorbe water and retain it in the material - maximum water content in volume or weight.

Formulas: $n_{weight} = [(m_n - m_s)/m_s] \ge 100$ $n_{volume} = [(m_n - m_s)/(V \ge \rho_w)] \ge 100$ Unit: [%] $\rho_w = 1 \ g/cm^3$ BUILDING MATERIALS ENGINEERING

Humidity (moisture content)

Definition:

Momentary water (liquid or vapor) content in the material

Formula: $w = [(m_w - m_s)/m_s] \times 100$

Unit: [%]

Permeability

definition:

Material capability to be infiltrate by the specific water pressure

Unit: [no permeability under specified pressure (1), velocity (cm/s), depth of penetration (mm)]

BUILDING MATERIALS ENGINEERING

Permeability

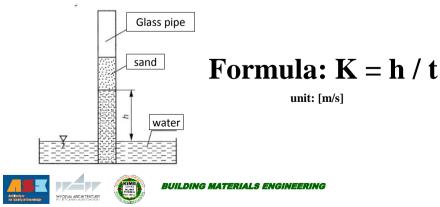
Bituminous hydroinsulation products

Asphalt materials	-	Permeability not allowed under pressure of		
	Water column of height [cm]	during [h]		
Asphalt coating emulsion	50	24		
Roofing paper felt	50-100	100		
Roofing fabric felt	100	150		
Roofing aluminum foil felt	150	120		

Hygroscopic

definition:

Capability of material to absorb moisture from the surrounding air.

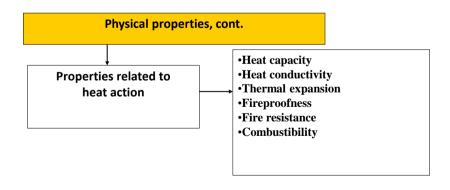

Unit: [%]

Capillarity

definition:

Ability of material to draw water along capillars.

Frost resistance


Definition:

Resistance to destruction in water saturated material subjected for the cyclic freezing and thawing action.

Unit: [# of cycles]

Physical properties

Heat Capacity

Definition:

ability of a material to store heat as it changes its temperature

formula:
$$Q = c \cdot m \cdot (t_1 - t_2)$$

 $Q = dQ/dt$

where: c - specific heat of material

unit: [J]

BUILDING MATERIALS ENGINEERING

Specific heat (c)

for selected building materials

material	Specific heat [kJ/kg·K]
Water	4,18
Air	1,0
Wood	2,4 ÷ 2,7
Ceramic, concrete	0,75 ÷ 0,92
Aluminium	0,92
Steel	0,46
Glass	0,72
Polyethene	2,3
Polyamide	1,67

Heat (thermal) conductivity

Definition:

Ability of material to transmit heat,

-property depends on the temperature gradient between opposite surfaces of material

Coefficient of Thermal Conduction (λ)

Definition:

Density of heat stream passing by thru the layer of material $[W/m^2]$, when temperature change (Δt) on the thickness of material (d) is 1K/m

Unit: [W/(m·K)]

Coefficient of thermal conduction (λ)

Material	λ for dry material [W/(m·K]
Styrofoam	0,037 ÷ 0,045
Fiberboard	0,058 ÷ 0,069
Pine wood	0,163 ÷ 0,300
Cellular concrete	0,140 ÷ 0,275
Brick wall	0,756
Glass	0,95 ÷ 1,05
Normal concrete	1,22 ÷ 1,50
Granite	3,20 ÷ 3,50
Steel	58,00

Thermal expantion

definition:

Changes in material dimensions along with temperature changes

formula: $\alpha = \Delta l / l \cdot \Delta t$

Unit: [1/ºC]

Coefficient of linear thermal expansion (α)

Material	α [1/°C]
Stone, ceramic and wood along the grain glass Cement concrete and steel Aluminum	(0,3 ÷ 0,9) · 10 ⁻⁵ (0,87 ÷ 0,9) · 10 ⁻⁵ (1,0 ÷ 1,1) · 10 ⁻⁵ 2,4 · 10 ⁻⁵

BUILDING MATERIALS ENGINEERING

Fireproofness

definition:

Material's ability to resist (not change shape and not change major properties) a long term high temperature influence.

Unit: [classes: depends on temperature]

Fireproofness

Clasification:

- <u>fireproof material,</u> stabile in temperature > 1580°C (e.g. fireclay),
- hardly fusible material,

stabile in temperature 1350 ÷ 1580°C,

• easily fusible material,

not stabile in temperature > 1350°C,

BUILDING MATERIALS ENGINEERING

Fire resistance

Definition:

No destruction of material during fire: measured in classes related to the time in which material could resist destructive influence of fire

Fire

Uncontrolled process of fire extension

Destructive influence of fire can affect changes of: structure, strength properties, shape etc.

COMBUSTIBILITY

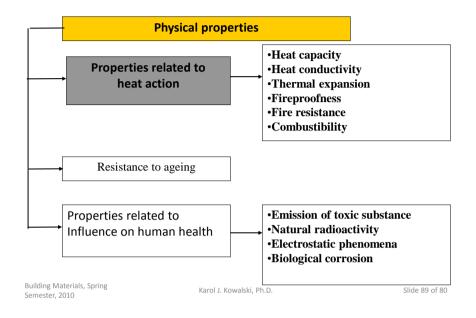
Ability of catching fire and burn

Combustibility is classified on the basis of tests in testing furnace.

Cylindrical specimen placed in furnace with wall temperature of 825°C; signs of combustion has to be observe (increase of temperature in furnace, flame, loose of mass).

COMBUSTIBILITY

CLASSIFICATION:


<u>Not combustible materials:</u> not burn under flame or high temperature (glass, ceramic, stone) action.

<u>Hardly combustible materials</u>: – burn hardly under flame or high temperature (smolder and carbonization) action. Not support combustion without source of flame (fire protected timber).

<u>Easly combustible materials:</u> - burn easly under flame or high temperature action. Support burning without external source of flame (wood).

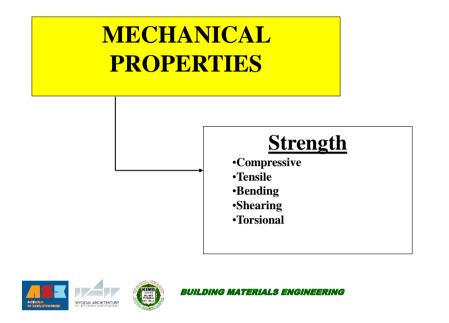
Physical Properties of Building Materials

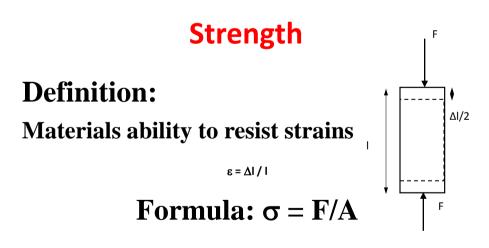
Natural Radioactivity

Content of radioactive elements

S_{K} = concentration of potassium ⁴⁰K;

 $S_{Ra} = \text{concentration of radium}^{226}Ra;$

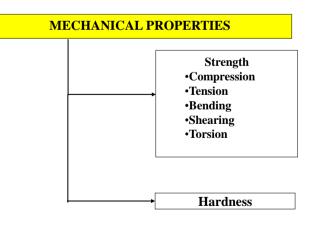

 S_{Th} = concentrations of thor ²³²Th;


1 Bequerel: one self induce nuclear change in isotop during one second time period

Unit: Bq/kg (Bequerels/kg)

MECHANICAL PROPERTIES

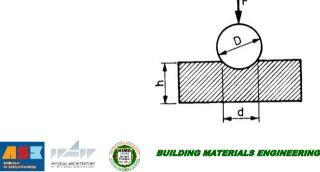
Unit: [Pa= N/m²]


Unit: [MPa = N/mm²] what is psi?

Strengitt		
Material	Compressive strength [MPa]	Tensile strength [MPa]
Granite	120-280	10-20
Steel	320-900	320-900
Glass	350-1000	10-80
Timber ([⊥] or∥)	40-80	70-150
Ceramic	5-35	0,2-2
Regular concrete	10-60	0,9-6
Iron cast	600-1000	140-180

Strenght

Mechanical properties



Hardness

Definition:

Materials resistance to resist residual strains under focused force acting on its surface l_F

HARDNESS Test methods

- Mohs (rocks)
- Janki (wood)
- Rockwell (steel)
- Brinell (steel, plastics)
- Shore (rubber)
- Vickersa (glass)

HARDNESS

Mohs' scale

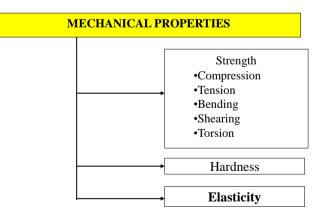
o 1, 2: nail,

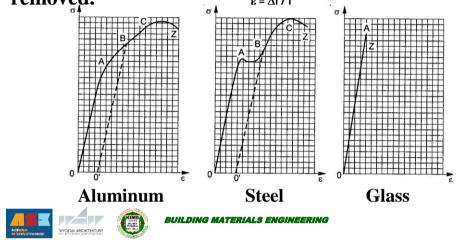
Scratching material surface o 3, 4: coin (copper), pieces of minerals with $k_1 \circ 5$, 6: steel, establishing which one leaves o 7: glass (1 — talc, 2 — gypsum, 3 - calcute,

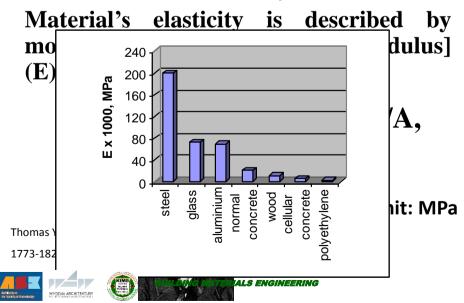
4 — fluorite, 5 — apatite, 6 — orthoclase,

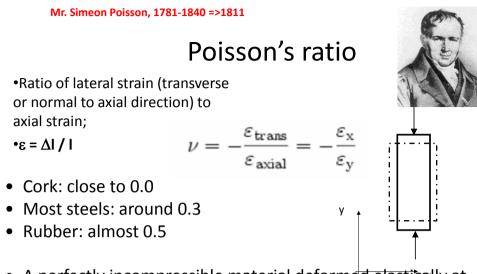
7 — quartz, 8 — topaz, 9 — corundum,

10 — diamond)


Friedrich Mohs, 1773-1839


MECHANICAL PROPERTIES




Elasticity

Material ability to deform under stress and return to its original shape when the stress is removed. $\varepsilon = \Delta 1/1$

• A perfectly incompressible material deformed elastically at small strains would have a Poisson's ratio of exactly 0.5

MECHANICAL PROPERTIES

Building Materials, Spring Semester, 2010

Karol J. Kowalski, Ph.D.

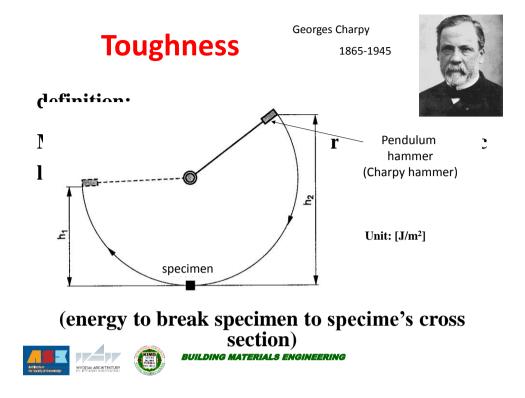
Slide 102 of 80

Abrasibility (Grindability)

definition:

Material's behavior to resist destructive influence of abrasive forces

Unit: [cm, g, cm³]


MECHANICAL PROPERTIES

MF	MECHANICAL PROPERTIES	
		Strength •compression •tensile •bending •shearing •torsional
		Hardness
		Elasticity
		Abrasibility
		Toughness

Building Materials, Spring Semester, 2010

Karol J. Kowalski, Ph.D.

Slide 104 of 80

MECHANICAL PROPERTIES

ME	MECHANICAL PROPERTIES		
-		Strength •compression •tensile •bending •shearing •torsional	
⊢		Hardness	
-		Elasticity	
-		Abrasibility	
-		Toughness	
L		Brittleness	

Building Materials, Spring Semester, 2010

Karol J. Kowalski, Ph.D.

Slide 106 of 80

Brittleness

Definition:

Tensile strength $(\mathbf{R}_r, \mathbf{f}_t)$ and compressive strength ratio $(\mathbf{R}_c, \mathbf{f}_c)$.

Formula: $k = f_r/f_c$

Brittle material: $\mathbf{k} \leq \frac{1}{8} (\mathbf{k} \leq 0, 125)$

BUILDING MATERIALS ENGINEERING

MECHANICAL PROPERTIES

PLASTICITY

Definition:

property of a material to undergo permanent deformation without loosing cohesion.

Clay, metals, asphalts, polymers.

KIMB

BUILDING MATERIALS ENGINEERING

MECHANICAL PROPERTIES

	Fatigue properties
_	Plasticity
	Brittleness
	Toughness
	Abrasibility
	Elasticity
	Hardness
	•torsional
	•shearing
	•bending
	•compression •tensile
	Strength

FATIGUE of MATERIAL

progressive and permanent structural damage

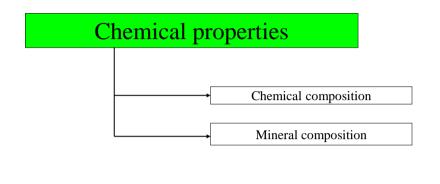
that occurs when material is subjected to a cyclic or fluctuating strains

(strains corresponding to the nominal stresses)

nominal stresses have maximum values less than the static yield strength of the material

MECHANICAL PROPERTIES Strength •compression •tensile •bending shearing •torsional Hardness Elasticity Abrasibility Toughness Brittleness Plasticity Fatigue properties **Moisture softening** BUILDING MATERIALS ENGINEERING

MOISTURE SOFTENING COEFFICIENT


Definition:

Ratio of material compressive strength measured for dry and water saturated specimens.

MECH	ANICAL PROPERTIES
	Strength
	•compression
	•tensile
	•bending
	•shearing
	•torsional
	Hardness
	Elasticity
	Abrasibility
	Toughness
	Brittleness
	Plasticity
	→ Fatigue properties
	Moisture softening
l	Creeping/relaxation
	BUILDING MATERIALS ENGINEERING

Building Materials, Spring Semester, 2010

Karol J. Kowalski, Ph.D.

Slide 115 of 80

CHEMICAL COMPOSITION

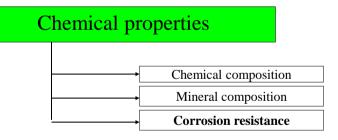
Elements or oxide content in material.

Example: chemical composition of Portland clinker

e	elemental[%]	oxides [%]
Ca	44 ÷ 49	CaO 62 ÷ 68
0	30 ÷ 38	SiO ₂ 18 ÷ 25
Si	8 ÷ 12	A1 ₂ 0 ₃ 4 ÷ 8
AI	2 ÷ 4	Fe ₂ 0 ₃ 2 ÷ 4
Fe	1 ÷ 3	
		others:
Othe	ers: up to 7	MgO 0,5 ÷ 6
		SO ₃ 0,8 ÷ 3
		Na ₂ O +K ₂ O 0,4 ÷ 3

MINERAL COMPOSITION

Polyminerals content in material.


Exmple: mineral composition of Portland clinker

Mineral compounds	content
	[% by mas.]
3CaO [·] SiO ₂ tricalcium silicate (alite)	50-65
2CaO [·] SiO ₂ dicalcium silicate (belite)	15-28
3CaO [·] A1 ₂ O ₃ tricalcium aluminate	5-15
$4CaO^{-}Al_2O_3^{-}Fe_2O_3$ ferroaluminate (braunmillerite)	5-15
CaSO ₄ [·] H ₂ O - gypsum or CaSO ₄ - anhydrite	~5

BUILDING MATERIALS ENGINEERING

CHEMICAL PROPERTIES OF BUILDING MATERIALS

Corrosion

Deterioration of essential properties of material due to chemical, physical or chemo-physical reactions in aggressive environment or due to the internal processes in the material (internal corrosion).

Aggressive environment: assembly of external agents which could harmfully influence material structure (and material properties).

Corrosion resistance: material's ability to resist aggressive environment.

Technological properties

_	
_	Consistency
	Viscosity
_	Plasticity
	Workability
_	Fluidity
_	Efficiency
	Time of workability retaining

Durability: capacity of a product (material), component, system, building or structure to perform the function for which it was designed, for a specified period of time.

Deterioration agents for building materials:

a) External agents

physical, chemical, biological

b) Internal agents

physico-chemical properties of material

c) Indirect agents

defects, errors in: designing, production, construction, application

Durability

a. External agents:

- **physical**: precipitation, snow, temperature, changes in humidity, frost, pressure and suction of wind, climate,
- mechanical: static and dynamic loads, vibrations, explosions,
- chemical: environment,
- **biological**: microorganisms (bacteria), moulds, algae, fungus etc.

Durability

b. Internal agents:

expansion, shrinkage, changes of chemical composition due to interactions of material components

c. Indirect agents:

improper selection of compounds, bad quality of production, improper application.

